# Musculoskeletal Manifestations in Patients with ATTR Amyloidosis: Evidence from Real-World Analyses and Clinical Trials

Mazen Hanna<sup>1</sup>, Chafic Karam<sup>2</sup>, Simon Gibbs<sup>3</sup>, Robert L. Gottlieb<sup>4</sup>, Shaun Bender<sup>5</sup>, Colleen Moffitt<sup>5</sup>, Catherine Summers<sup>5</sup>, Emre Aldinc<sup>5</sup>, Kelley Capocelli<sup>5</sup>, Brian Drachman<sup>6</sup>

<sup>1</sup>Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH, USA; <sup>2</sup>University of Pennsylvania, Philadelphia, PA, USA; <sup>3</sup>Box Hill Hospital, Melbourne, Victoria, Australia; <sup>4</sup>Center for Advanced Heart and Lung Disease, Baylor University Medical Center, Dallas, TX, USA; <sup>5</sup>Alnylam Pharmaceuticals, Cambridge, MA, USA; <sup>6</sup>Penn Presbyterian Medical Center, Philadelphia, PA, USA

## Methods and Overview of Studies Included in the Analysis

**Objective:** To identify the prevalence of MSK manifestations reported in the medical and surgical histories of patients with ATTR amyloidosis

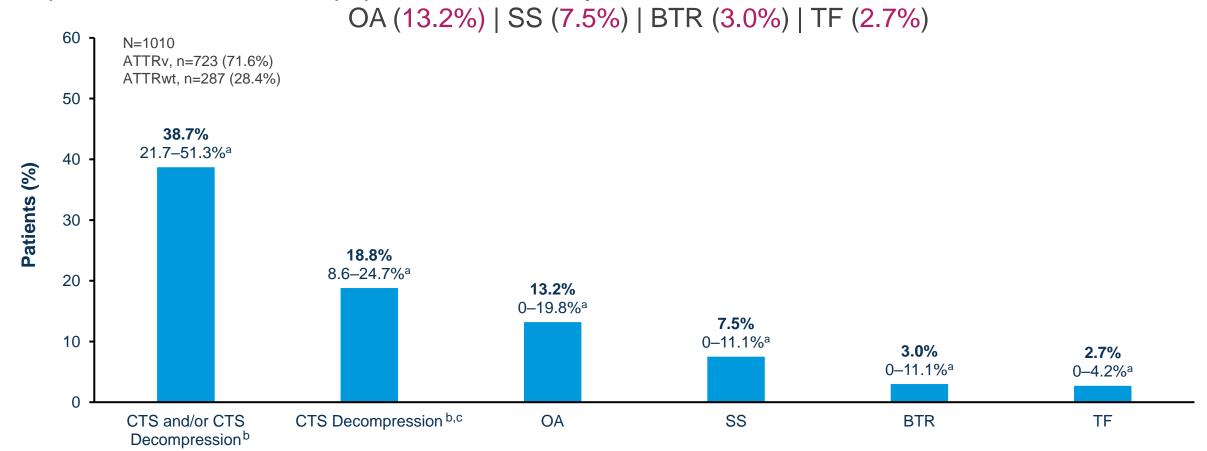
- Data sources included: Retrospective pooled analysis of MSK manifestation prevalence in patients with ATTR amyloidosis in Alnylam-sponsored studies, and data from the patisiran-CM EAP and a patient survey in patients with ATTRwt or ATTRv amyloidosis
  - MSK manifestations included: Carpal tunnel syndrome | spinal stenosis | biceps tendon rupture | trigger finger | osteoarthritis
- Medical and surgical history captured in the enrollment/baseline assessment from each study in the pooled analysis were analyzed for the prevalence of MSK manifestations

| Study                                     | Total Number of<br>Patients<br>N=1010 (%) | Study Description                                                                                              |
|-------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Patisiran Ph2 OLE <sup>1</sup>            | 27 (2.7)                                  | Safety and tolerability of long-term patisiran: ATTRv amyloidosis with mild-to-moderate neuropathy             |
| APOLLO (Ph3) <sup>2</sup>                 | 225 (22.3)                                | Safety and efficacy of patisiran: ATTRv amyloidosis with PN                                                    |
| Patisiran-PN EAP <sup>3</sup>             | 154 (15.2)                                | Expanded access study of patisiran: ATTRv amyloidosis with PN                                                  |
| Post-OLT (Ph3b) <sup>4</sup>              | 23 (2.3)                                  | Safety, efficacy, and PK of patisiran: ATTRv amyloidosis with PN progression after orthotopic liver transplant |
| APOLLO-B (Ph3) <sup>5</sup>               | 359 (35.5)                                | Safety and efficacy of patisiran: ATTR amyloidosis with CM                                                     |
| US observational study (Ph4) <sup>6</sup> | 58 (5.7)                                  | Effectiveness of patisiran: ATTRv amyloidosis with PN with a V122I or T60A variant (US)                        |
| HELIOS-A (Ph3) <sup>7</sup>               | 164 (16.2)                                | Safety and efficacy of vutrisiran: ATTRv amyloidosis with PN                                                   |

ATTR, transthyretin amyloidosis; ATTRv, hereditary transthyretin (v for variant); ATTRwt, wild-type transthyretin; CM, cardiomyopathy; EAP, expanded access program; MSK, musculoskeletal; OLE, open-label extension; OLT, orthotopic liver transplant; Ph, Phase; PK, pharmacokinetics; PN, polyneuropathy

Studies included in pooled analysis

<sup>1.</sup> Coelho T et al. Orphan J Rare Dis 2020;15:179; 2. Adams D et al. N Engl J Med 2018;379:11–21; 3. ClinicalTrials.gov: NCT02939820. Available at: https://clinicaltrials.gov/ct2/show/NCT02939820;


<sup>4.</sup> Schmidt HH et al. Am J Transplant 2022;22:1646-57; 5. Maurer MS et al. New Engl J Med 2023;389:1553-65;

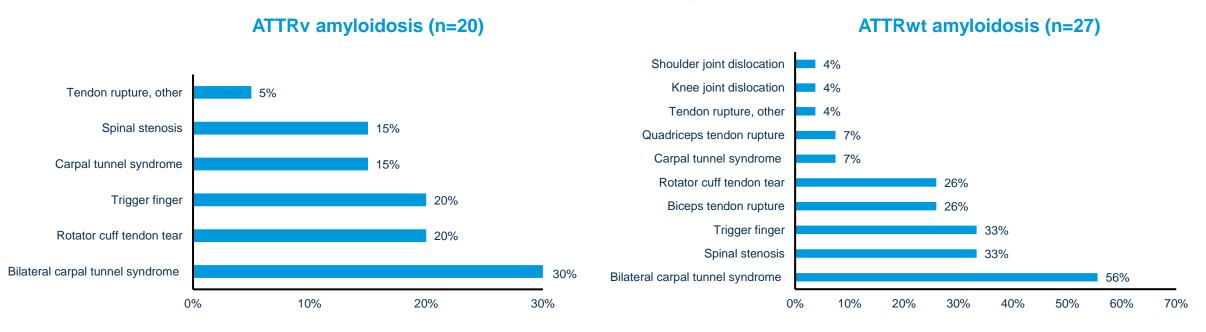
<sup>6.</sup> ClinicalTrials.gov: NCT04201418. Available at: https://clinicaltrials.gov/ct2/show/NCT04201418; 7. Adams D et al. Amyloid 2023;30:18–26.

### | | Prevalence of Musculoskeletal Manifestations

#### **Pooled Data Analysis**

 CTS and/or CTS decompression (38.7%) was the most prevalent MSK manifestation/MSK-related procedure in the overall population followed by:

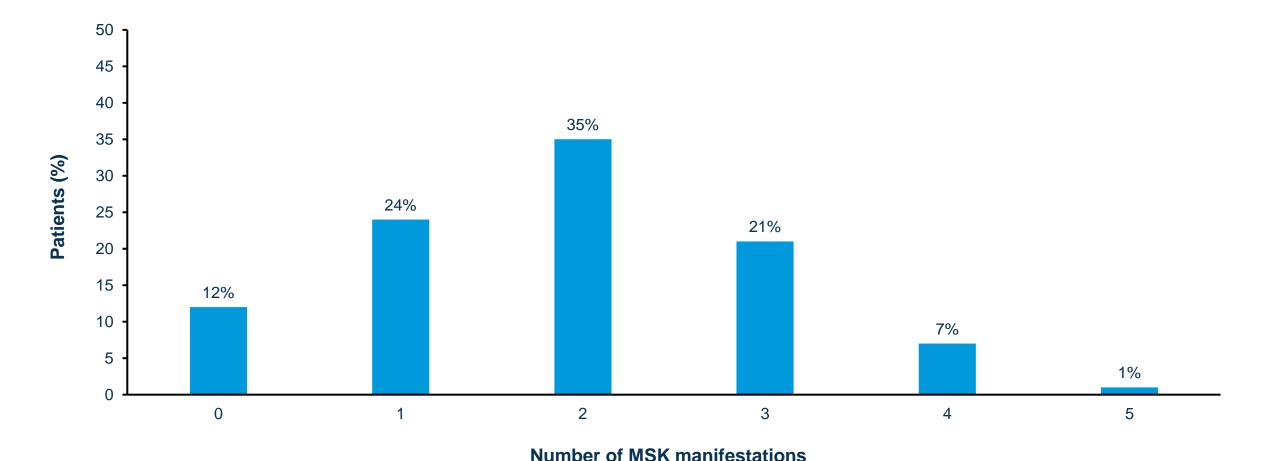



<sup>&</sup>lt;sup>a</sup>Range for the prevalence of MSK manifestations in the individual studies. <sup>b</sup>CTS and CTS decompression surgery are not mutually exclusive <sup>c</sup>Includes patients who had undergone CTS decompression surgery, with or without reporting a diagnosis of CTS ATTRv, hereditary transthyretin (v for variant); ATTRwt, wild-type transthyretin; BTR, biceps tendon rupture; CTS, carpal tunnel syndrome; MSK, musculoskeletal; OA, osteoarthritis; SS, spinal stenosis; TF, trigger finger

# | | Musculoskeletal Manifestations in ATTR Amyloidosis

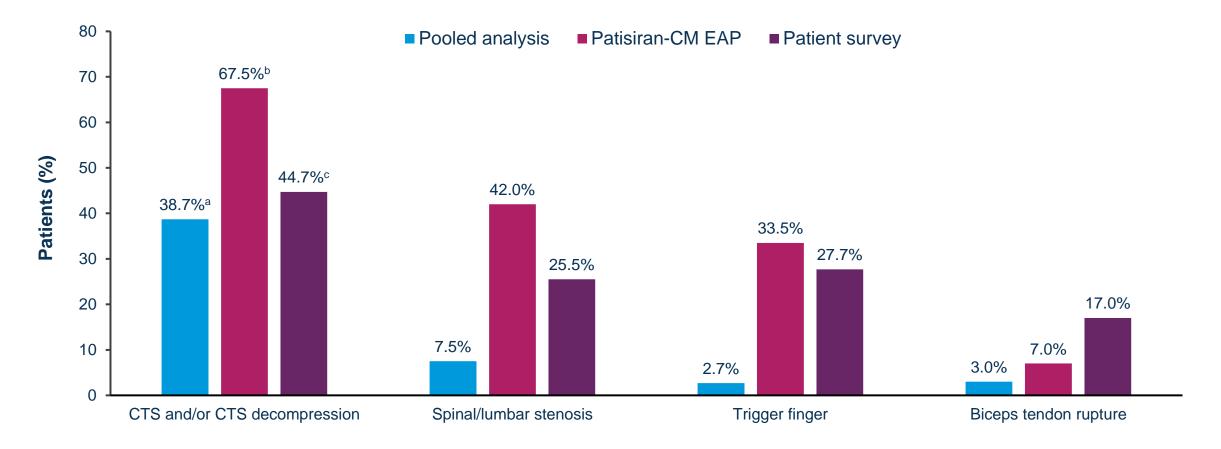
#### Patient Survey<sup>1</sup>

- Members of the Amyloidosis Support Group who were aged ≥18 at the time of their ATTR amyloidosis diagnosis self-reported their signs and symptoms in an online survey
- Symptoms were classified post hoc as neuropathy-, CV-, or orthopedic-related in consultation with expert physician advisors


#### **Orthopedic-related diagnoses**



## | | Musculoskeletal Manifestations


#### **Patisiran-CM EAP**

• >1 MSK manifestation: 128/200 (64.0%) patients



### | | Prevalence of Musculoskeletal Manifestations

- Prevalence of MSK manifestations was higher in the patisiran-CM EAP and patient survey studies
  - This may reflect proactive questioning regarding MSK symptoms and procedures in these studies



# **III Summary**

- These data represent the first comprehensive analysis exploring prevalence of MSK manifestations in patients with ATTR amyloidosis across randomized clinical trials and expanded-access programs
- Understanding the epidemiology and characteristics of MSK manifestations associated with ATTR amyloidosis may support the awareness and recognition of these symptoms among surgeons and other healthcare professionals, allowing for early diagnosis and improved disease management
- Surgeons should consider partnering with cardiology and neurology colleagues to identify
  patients where biopsies during routine surgical procedures and Congo Red staining may detect
  amyloid deposition, especially in patients over 60 years undergoing carpal tunnel release

| | Back-Up Slides

## **Baseline Characteristics**

#### **Patisiran-CM EAP**

| Characteristic                            | Patisiran (n=200) |
|-------------------------------------------|-------------------|
| Mean age at diagnosis, years              | 73.8              |
| Age at diagnosis, %                       |                   |
| <60 years                                 | 2.0               |
| 60–75 years                               | 49.5              |
| >75 years                                 | 48.5              |
| Mean age at enrollment, years             | 75.4              |
| Male, %                                   | 94.5              |
| White, %                                  | 89.5              |
| Genotype, %                               |                   |
| ATTRwt                                    | 93.5              |
| ATTRv                                     | 6.5               |
| National Amyloidosis Centre ATTR Stage, % |                   |
| 1                                         | 64.5              |
| 2                                         | 26.0              |
| 3                                         | 9.5               |

- Almost all patients were ≥60 years of age
  - Mean age 73.8 years
- Mostly male (94.5%) and White (89.5%)
- Most patients had wild-type ATTR cardiac amyloidosis and Stage 1 disease
  - V122I most common variant (n=10)
  - Others include 1 each for T60A, D18N, and T80I
- ~2/3 diagnosed within a year of symptom onset
  - 27% experienced a 1–10-year diagnostic delay