

### HELIOS-A: Impact of Vutrisiran on Quality of Life and Functional Status in Hereditary Transthyretin-Mediated Amyloidosis with Polyneuropathy

#### <u>Senda Ajroud-Driss</u>,<sup>1</sup> John L. Berk,<sup>2</sup> David Adams,<sup>3</sup> Julian Gillmore,<sup>4</sup> Kon-Ping Lin,<sup>5</sup> Parag Kale,<sup>6</sup> Haruki Koike,<sup>7</sup> Emre Aldinc,<sup>8</sup> Chongshu Chen,<sup>8</sup> John Vest,<sup>8</sup> Laura Obici<sup>9</sup>

<sup>1</sup>Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; <sup>2</sup>Boston Medical Center, Boston, MA, USA; <sup>3</sup>Neurology Department, Université Paris-Saclay, U1195, INSERM, Neurology Department, AP-HP, CHU Bicêtre, Le Kremlin Bicêtre, France; <sup>4</sup>National Amyloidosis Centre, University College London, Royal Free Hospital, London, UK; <sup>5</sup>Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan; <sup>6</sup>Baylor University Medical Center, Dallas, TX, USA; <sup>7</sup>Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan; <sup>8</sup>Alnylam Pharmaceuticals, Cambridge, MA, USA; <sup>9</sup>Amyloidosis Research and Treatment Centre; IRCCS Fondazione Policlinico San Matteo, Pavia, Italy

### **Disclosures for Senda Ajroud-Driss**

| Conflict         | Disclosures                                                              |  |  |
|------------------|--------------------------------------------------------------------------|--|--|
| Advisory board   | Alnylam Pharmaceuticals<br>Amylyx Pharmaceuticals<br>Biogen<br>Orphazyme |  |  |
| Research support | Alnylam Pharmaceuticals<br>Amylyx Pharmaceuticals<br>Biogen              |  |  |
| Speakers bureau  | Alnylam Pharmaceuticals                                                  |  |  |

#### **Background and Rationale**

#### hATTR Amyloidosis, Also Known as ATTRv Amyloidosis

- Rare, underdiagnosed, inherited, rapidly progressive, debilitating, and fatal disease<sup>1–4</sup>
- Caused by variants in the *TTR* gene that result in misfolded TTR accumulating as amyloid deposits in multiple organs and tissues<sup>1–4</sup>
  - The majority of individuals develop a mixed phenotype of polyneuropathy and cardiomyopathy<sup>5,6</sup>
- Progression of hATTR amyloidosis is associated with a deterioration in QOL and physical functioning<sup>7–10</sup>

#### **Vutrisiran**

 Investigational, subcutaneously administered RNAi therapeutic targeting hepatic production of variant and wt TTR in development for the treatment of ATTR amyloidosis<sup>11,12</sup>

#### **Patisiran**

 RNAi therapeutic administered Q3W via IV infusion, approved for the treatment of the polyneuropathy of hATTR amyloidosis based on the Phase 3, placebo-controlled APOLLO trial<sup>13,14</sup>

#### **Therapeutic Hypothesis**



ESC-GalNAc platform utilized by vutrisiran allows for Q3M SC injection<sup>11,12</sup>

ATTR, transthyretin-mediated; ATTRv, hereditary transthyretin (v for variant); ESC, enhanced stabilization chemistry; GalNAc, *N*-acetylgalactosamine; hATTR, hereditary transthyretin-mediated; IV, intravenous; Q3M, every 3 months; Q3W, every 3 weeks; RNAi, ribonucleic acid interference; SC, subcutaneous; TTR, transthyretin; wt, wild-type

1. Hanna. Curr Heart Fail Rep 2014;11:50–7; 2. Hawkins et al. Ann Med 2015;47:625–38; 3. Damy et al. J Cardiovasc Transl Res 2015;8:117–27; 4. Mohty et al. Arch Cardiovasc Dis 2013;106:528–40; 5. Rapezzi et al. Eur Heart J 2013;34:520–8; 6. Coelho et al. Curr Med Res Opin 2013;29:63–76; 7. Vinik et al. J Peripher Nerv Syst 2014;19:104–14; 8. Coelho et al. Muscle Nerve 2017;55:323–32; 9. Obici et al Amyloid 2020;27:153–62; 10. Dyck et al. PNS Congress 2018. Poster; 11. Habtemariam et al. Clin Pharmacol Ther 2021;109:372–82; 12. Nair et al. J Am Chem Soc 2014;136:16958–61; 13. Alnylam Pharmaceuticals. US prescribing information: ONPATTRO® (patisiran) lipid complex injection, for intravenous use. February 2020; 14. Adams et al. N Engl J Med 2018;379:11–21

### **Vutrisiran Phase 3 HELIOS-A Study**

#### Global, Randomized, Open-Label Study in Patients with hATTR Amyloidosis with Polyneuropathy



<sup>a</sup>The results presented for 9- and 18-month efficacy endpoints (except for KPS) are based on a mixed-effects model for repeated measures analysis.<sup>b</sup>Higher scores of mNIS+7 indicate more neurologic impairment (range: 0–304). <sup>c</sup>Higher scores of Norfolk QOL-DN indicate worse QOL (range: -4 to 136). d10-MWT speed (m/s) = 10 meters/mean time (seconds) taken to complete 2 assessments at each visit, imputed as 0 for patients unable to perform the walk; lower speeds indicate worse ambulatory function. eLower scores of R-ODS indicate more disability (range: 0-48). <sup>[L</sup>Cower scores of mBMI (weight [in kg/m<sup>2</sup>] × serum albumin [in g/L]) indicate worse nutritional status. <sup>g</sup>EQ-VAS (range: 0-100) 0 = best health, 100 = worst health. <sup>h</sup>KPS measures functional status on an 11-point scale correlating to % values. 100% (normal; no evidence of disease); 0% (death). Higher scores indicate less functional impairment. Non-inferiority analysis

10-MWT, 10-meter walk test; EQ-VAS, EuroQoL Visual Analog Scale: hATTR, hereditary transthyretin-mediated amyloidosis; IV, intravenous; KPS, Karnofsky performance status; mBMI, modified body mass index; mNIS+7, modified Neuropathy Impairment Score +7; NIS, Neuropathy Impairment Score; Norfolk QOL-DN, Norfolk Quality of Life-Diabetic Neuropathy; PND, polyneuropathy disability; Q3M, every 3 weeks; QOL, quality of life; R-ODS, Rasch-built Overall Disability Scale; SC, subcutaneous; TTR, transthyretin 1. Adams et al. N Engl J Med 2018:379:11-21: 2. Adams et al. Neurology 2021:96(15 Suppl.):1234



selected on the basis of similar eligibility criteria and endpoints

#### **Baseline Demographic and Disease Characteristics**

| Characteristic                                               | APOLLO            | HELIOS-A              |                     |
|--------------------------------------------------------------|-------------------|-----------------------|---------------------|
|                                                              | Placebo<br>(n=77) | Vutrisiran<br>(n=122) | Patisiran<br>(n=42) |
| Age, median (range), years                                   | 63 (34–80)        | 60 (26–85)            | 60 (31–81)          |
| Males, n (%)                                                 | 58 (75.3)         | 79 (64.8)             | 27 (64.3)           |
| Median time since hATTR amyloidosis diagnosis, years (range) | 1.41 (0.0–16.5)   | 1.94 (0.0–15.3)       | 2.39 (0.1–12.5)     |
| TTR genotype, n (%)                                          |                   |                       |                     |
| V30M                                                         | 40 (51.9)         | 54 (44.3)             | 20 (47.6)           |
| Early-onset V30M (<50 years)                                 | 10 (13.0)         | 25 (20.5)             | 8 (19.0)            |
| Non-V30M <sup>a</sup>                                        | 37 (48.1)         | 68 (55.7)             | 22 (52.4)           |
| Previous tetramer stabilizer use, n (%)                      | 41 (53.2)         | 75 (61.5)             | 33 (78.6)           |
| NIS, mean (range)                                            | 57.0 (7.0–125.5)  | 43.0 (5.0–127.0)      | 43.1 (5.5–115.6)    |
| PND score <sup>b</sup> , n (%)                               |                   |                       |                     |
| I: Preserved walking, sensory disturbances                   | 20 (26.0)         | 44 (36.1)             | 15 (35.7)           |
| II: Impaired walking but can walk without stick or crutch    | 23 (29.9)         | 50 (41.0)             | 17 (40.5)           |
| IIIA: Walk with 1 stick or crutch                            | 22 (28.6)         | 16 (13.1)             | 7 (16.7)            |
| IIIB: Walk with 2 sticks or crutches                         | 11 (14.3)         | 12 (9.8)              | 3 (7.1)             |
| Cardiac subpopulation, n (%) <sup>c</sup>                    | 36 (46.8)         | 40 (32.8)             | 14 (33.3)           |

<sup>a</sup>The non-V30M TTR genotype represents 24 different variants in HELIOS-A. <sup>b</sup>One patient (1.3%) in the external placebo group had a PND score of IV defined as confined to wheelchair or bedridden (not shown on the slide). <sup>c</sup>Cardiac subpopulation was defined as patients who had pre-existing evidence of cardiac amyloid involvement (baseline LV wall thickness ≥1.3 cm and no aortic valve disease or hypertension in medical history)

LV, left ventricular; NIS, Neuropathy Impairment Score; PND, polyneuropathy disability; TTR, transthyretin

#### **Rapid and Sustained Reduction in Serum TTR Levels with Vutrisiran**

 Vutrisiran achieved a mean steady-state serum TTR reduction from baseline of 88% (SD: 16%), which was non-inferior to that observed with the within-study patisiran reference group over 18 months (median difference [vutrisiran–patisiran] [95% CI]: 5.28% [1.17, 9.25], lower limit of CI >–10%)



#### **Percent Change from Baseline in Serum TTR Levels**

# Improvement in Quality of Life with Vutrisiran vs External Placebo at Month 9<sup>1</sup> and Month 18

At Month 18, 56.8% of vutrisiran-treated patients had an improvement in Norfolk QOL-DN total score, relative to baseline, compared with 10.4% of patients in the external placebo group (odds ratio [95% CI]: 11.3 [5.0, 25.7])



#### Norfolk QOL-DN LS Mean Change from Baseline<sup>a</sup>

<sup>a</sup>mITT population (all randomized patients who received any amount of study drug). Value of n is the number of evaluable patients at each timepoint. Higher scores of Norfolk QOL-DN indicate worse quality of life (range: -4 to 136). At baseline, the mean (± SD) Norfolk QOL-DN score was 47.1 (26.3) in the vutrisiran group and 55.5 (24.3) in the external placebo group. Data plotted are MMRM model data

CI, confidence interval; LS, least squares; LSMD, LS mean difference; mITT, modified intent-to-treat; MMRM, mixed-effects model for repeated measures; Norfolk QOL-DN, Norfolk Quality of Life-Diabetic Neuropathy; SD, standard deviation; SE, standard error 1. Adams et al. *Neurology* 2021;96(15 Suppl.):1234

### Improvement across All Norfolk QOL-DN Domains with Vutrisiran vs External Placebo at Month 18

#### Norfolk QOL-DN Mean Change from Baseline by Domain



Higher scores of Norfolk QOL-DN indicate worse quality of life (range: -4 to 136). At baseline, the mean (± SD) Norfolk QOL-DN score was 47.1 (26.3) in the vutrisiran group and 55.5 (24.3) in the external placebo group. Mean (± SD) Norfolk QOL-DN scores in individual domains were: 23.2 (13.8) in the vutrisiran group and 28.7 (13.0) in the external placebo group (physical functioning/large fiber); 5.7 (5.7) in the vutrisiran group and 7.8 (6.0) in the external placebo group (activities of daily living); 11.0 (6.1) in the vutrisiran group and 11.2 (5.8) in the external placebo group (symptoms); 4.6 (4.2) in the vutrisiran group and 5.0 (4.1) in the external placebo group (small fiber); and 2.7 (2.9) and 2.9 (2.9) in the external placebo group (autonomic) ADL, activities of daily living; LS, least squares; Norfolk QOL-DN, Norfolk Quality of Life-Diabetic Neuropathy; SD, standard deviation; SE, standard error

# Improvement in EQ-VAS with Vutrisiran vs External Placebo at Month 9 and Month 18

#### **EQ-VAS LS Mean Change from Baseline**<sup>a</sup>



anlTT population (all randomized patients who received any amount of study drug). Value of n is the number of evaluable patients at each timepoint. Data plotted are MMRM model data. At baseline, the mean (± SD) EQ-VAS was 64.5 (18.5) in the vutrisiran group and 54.6 (18.0) in the external placebo group

CI, confidence interval; EQ-VAS, EuroQol Visual Analog Scale; LS, least squares; LSMD, LS mean difference; mITT, modified intent-to-treat; MMRM, mixed-effects model for repeated measures; SD, standard deviation; SE, standard error

# Improvements in R-ODS and 10-MWT with Vutrisiran vs External Placebo at Month 9 and Month 18

#### 0.05 2 -0.004 (0.019) -0.024(0.025)-0.8(0.5)-1.5(0.6)Better n=122 n=115 n=112 from baseline Better n=122 n=115 change from baseline n=113 0.00 n=77 LSMD (95% CI): -0.05 n=76 -2 0.131 (0.071, 0.191) LSMD (95% CI): -0.10 4.2 (2.6, 5.9) change . -4 LSMD (95% CI): LSMD (95% CI): -0.15 0.239 (0.154, 0.325) Worse Worse 8.4 (6.5, 10.4) p=1.207 × 10<sup>-7</sup> -0.135 (0.025) -6 p=3.541 × 10<sup>-15</sup> (SE) -5.0 (0.7) -0.20 n=68 mean (SE) n=66 mean -8 -0.25 -0.264(0.036)-10 S -9.9(0.8)-0.30 പ n=55 n=54 -0.35 -12 Month 9 Month 18 **Baseline Baseline** Month 9 Month 18 Vutrisiran Placebo (APOLLO)

**R-ODS LS Mean Change from Baseline**<sup>a</sup>

#### **10-MWT LS Mean Change from Baseline (m/s)**<sup>a</sup>

<sup>a</sup>mITT population (all randomized patients who received any amount of study drug). Value of n is the number of evaluable patients at each timepoint. Data plotted are MMRM model data. At baseline, the mean (± SD) 10-MWT was 1.006 (0.393) in the vutrisiran group and 0.790 (0.319) in the external placebo group. At baseline, the mean (± SD) R-ODS was 34.1 (11.0) in the vutrisiran group and 29.8 (10.8) in the external placebo group.

10-MWT, 10-meter walk test; CI, confidence interval; LS, least squares; LSMD, LS mean difference; mITT, modified intent-to-treat; MMRM, mixed-effects model for repeated measures; R-ODS, Rasch-built Overall Disability Scale; SD, standard deviation; SE, standard error

# A Higher Proportion of Patients Had Stable or Improved KPS with Vutrisiran vs External Placebo at Month 18

- The majority of patients in the vutrisiran group (71.3%) had stable or improved<sup>a</sup> KPS at Month 18 compared with baseline (exploratory endpoint)
  - In the external placebo group, 42.8% of patients had stable or improved KPS at Month 18



#### Change from Baseline to Month 18 in KPS<sup>b</sup>

<sup>a</sup>Improvement is defined as an increase in KPS score from baseline. <sup>b</sup>On the KPS scale of 0–100%, 17 (14%), 25 (21%), 48 (39%), 27 (22%), and 5 (4%) of vutrisiran-treated patients had a score of 60, 70, 80, 90, and 100, respectively, at baseline KPS, Karnofsky performance score

# Improvement in mBMI with Vutrisiran vs External Placebo at Month 9 and Month 18

• The favorable effect of vutrisiran on mBMI compared with the external placebo group was observed at the first postbaseline assessment at Month 3



#### mBMI LS Mean Change from Baseline<sup>a</sup>

<sup>a</sup>mITT population (all randomized patients who received any amount of study drug). Value of n is the number of evaluable patients at each timepoint. Data plotted are MMRM model data. At baseline, the mean (± SD) mBMI was 1057.4 (233.8) in the vutrisiran group and 989.9 (214.2) in the external placebo group

12 CI, confidence interval; LS, least squares; LSMD, LS mean difference; mBMI, modified body mass index; mITT, modified intent-to-treat; MMRM, mixed model for repeated measures; SD, standard deviation; SE, standard error

### **HELIOS-A Safety Summary**<sup>a</sup>

## The majority of AEs were mild or moderate in severity

- No drug-related discontinuations or deaths
- Three study discontinuations (2.5%) due to AEs in the vutrisiran arm (two due to death, as previously reported; one due to heart failure), none of which were considered related to study drug
  - One death due to COVID-19 pneumonia and the other due to iliac artery occlusion
- As previously reported, two SAEs deemed related to vutrisiran by investigators:
  - Dyslipidemia and urinary tract infection
- AEs ≥10% in the vutrisiran group included fall, pain in extremity, diarrhea, peripheral edema, urinary tract infection, arthralgia, and dizziness
- Injection-site reactions were reported in 5 patients (4.1%) receiving vutrisiran; all were mild and transient
- No safety signals regarding liver function tests, hematology, or renal function related to vutrisiran

#### **HELIOS-A Safety Summary**<sup>a</sup>

|                                             | APOLLO            | HELIOS-A              |                     |
|---------------------------------------------|-------------------|-----------------------|---------------------|
| At least one event, n (%)                   | Placebo<br>(n=77) | Vutrisiran<br>(n=122) | Patisiran<br>(n=42) |
| AEs                                         | 75 (97.4)         | 119 (97.5)            | 41 (97.6)           |
| SAEs                                        | 31 (40.3)         | 32 (26.2)             | 18 (42.9)           |
| Severe AEs                                  | 28 (36.4)         | 19 (15.6)             | 16 (38.1)           |
| AEs leading to treatment discontinuation    | 11 (14.3)         | 3 (2.5)               | 3 (7.1)             |
| AEs leading to stopping study participation | 9 (11.7)          | 3 (2.5)               | 2 (4.8)             |
| Deaths                                      | 6 (7.8)           | 2 (1.6)               | 3 (7.1)             |

# HELIOS-A Vutrisiran Efficacy Results Consistent with APOLLO Patisiran at Month 18



**Vutrisiran Efficacy<sup>a</sup> vs External Placebo** 

Standardized Effect Sizes from HELIOS-A

<-----Placebo Better--->

<sup>a</sup>HELIOS-A mITT population. <sup>b</sup>APOLLO mITT population. The HELIOS-A patisiran arm was not intended for statistical testing vs vutrisiran for the endpoints listed. 10-MWT, 10-meter walk test; LV, left ventricular; mBMI, modified body mass index; mITT, modified intent-to-treat; mNIS+7, modified Neuropathy Impairment Score +7; Norfolk QOL-DN, Norfolk Quality of Life-Diabetic Neuropathy; NT-proBNP, N-terminal pro-brain

14 natriuretic peptide; R-ODS, Rasch-built Overall Disability Scale.

**Clinical Endpoints** mNIS+7 Norfolk QOL-DN 10-MWT **R-ODS** mBMI Cardiac Endpoints LV Wall Thickness Longitudinal Strain (%) LV End-Diastolic Volume Cardiac Output NT-proBNP -2.5 -2 -0.5 0 0.5 1.5 -1

<-----Patisiran Better----Placebo Better--->

Patisiran Efficacy<sup>b</sup> vs Placebo Standardized Effect Sizes from APOLLO

### Summary

- At Month 18, patients in the vutrisiran group demonstrated significant improvements in measures of
  - Quality of life (Norfolk QOL-DN, EQ-VAS) compared with external placebo
    - The treatment effect favoring vutrisiran over external placebo was consistent across all Norfolk QOL-DN domains at Month 18
  - Functional status (gait speed [10-MWT], disability [R-ODS], KPS) compared with external placebo
    - The majority (71%) of patients in the vutrisiran group improved or stabilized in the exploratory assessment of KPS score compared with baseline, whereas 43% of patients in the external placebo group improved or stabilized in KPS score compared with baseline
  - Nutritional status (mBMI) compared with external placebo
- The efficacy and safety of vutrisiran will continue to be characterized in the ongoing HELIOS-A randomized extension period in patients with hATTR amyloidosis with polyneuropathy

15 10-MWT, 10-meter walk test; EQ-VAS, EuroQOL-Visual-Analog Scale; hATTR, hereditary transthyretin-mediated; KPS, Karnofsky performance scale; mBMI, modified body mass index; Norfolk QOL-DN, Norfolk Quality of Life-Diabetic Neuropathy; R-ODS, Rasch-built Overall Disability Scale

Thank you to the patients, their families, investigators, study staff, and collaborators for their participation in the **HELIOS-A study**