

| | The Science of RNA interference (RNAi)

- This resource provides information about RNAi
- This resource is intended to be viewed in its entirety to support scientific exchange and is not intended as recommendations for clinical practice
- This resource may contain hyperlinks that are not functional in this format
- For further information, please see <u>RNAiScience.com</u> to connect with a Medical Science Liaison, submit a medical information request, or access other Alnylam medical education resources

III Contents

Natural RNAi Mechanism

RNAi Therapeutics

Delivering siRNAs to the Liver

Summary

| | Natural RNAi Mechanism

RNA Interference (RNAi) Is a Naturally Occurring Mechanism for Silencing Gene Expression^{1–3}

RNAi uses siRNA or miRNA to knock down expression of target genes by distinctive mechanisms^{1–4}

What are siRNA and miRNA?

siRNA and miRNA are types of short non-coding RNAs that target mRNA to silence genes⁴

What is the difference between siRNA and miRNA?

siRNA and miRNA have similar structures but slightly different mechanisms of action^{3,4}

The main difference between siRNA and miRNA is that siRNA inhibits the expression of one specific target mRNA, while miRNA can regulate expression of multiple mRNAs⁴

How do siRNA and miRNA silence gene expression?

siRNAs and miRNAs both use endogenous RNA-induced silencing complex (RISC) to induce silencing of gene expression^{1,3,4}

What is RISC and how does it work?

RISC is a ribonucleoprotein complex formed when an siRNA or miRNA is loaded onto a member of the Argonaute protein family^{5,6} The bound siRNA or miRNA guides RISC to target complementary mRNAs^{3–5}

RISC bound to miRNA silences gene expression mainly through translational repression or degradation of the target mRNA. RISC bound to siRNA silences gene expression at the post-transcriptional level through cleavage of the target mRNA³⁻⁵

This material will focus on the siRNA pathway

The Natural RNAi Mechanism of Action Involves Key Elements Such as Dicer and RISC¹⁻⁴

RNAi using siRNA¹⁻⁴

- Long dsRNA is processed into shorter strands in the nucleus by Drosha, an RNase enzyme
- Shorter dsRNA is exported to the cytoplasm, and cleaved into siRNA by Dicer, another RNase enzyme
- siRNA is loaded onto the multiprotein structure known as RISC and unwinds into passenger and guide strands
- The passenger strand is degraded in the cytoplasm, and the RISC + guide strand bind to complementary target mRNA
- Target mRNA is cleaved at a specific site and then degraded, decreasing production of the target protein

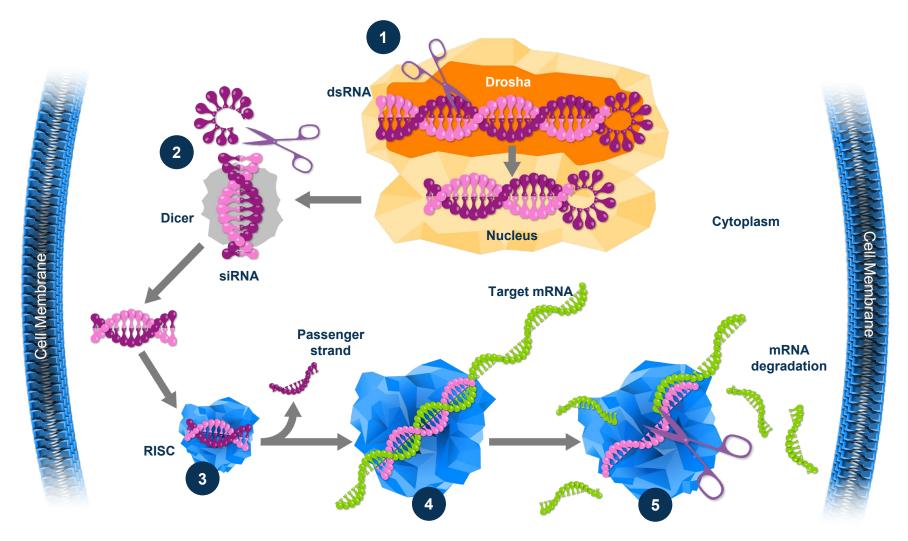


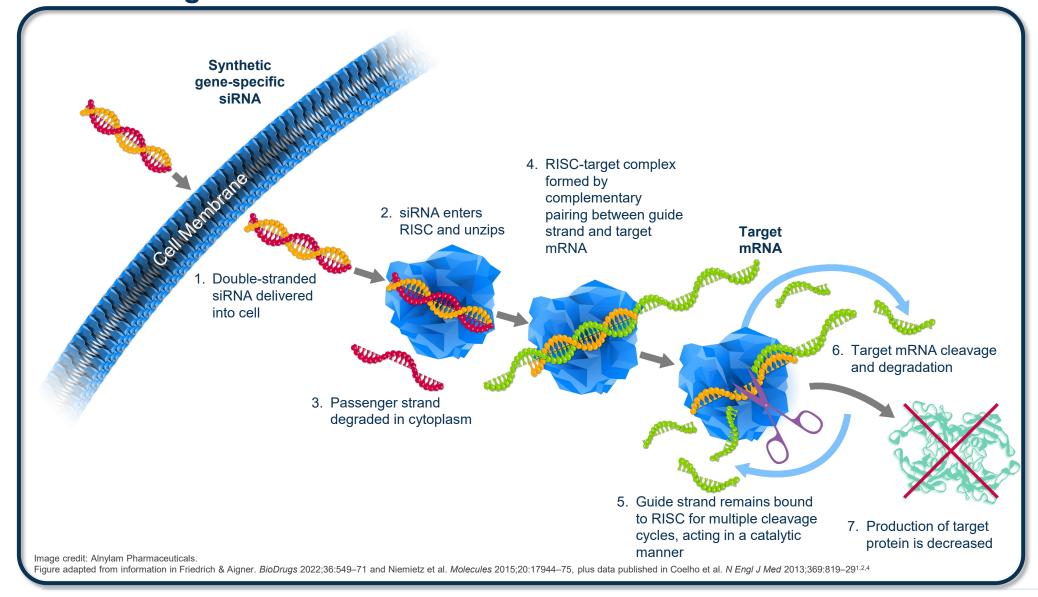
Figure adapted from UMass Chan Medical School RNA Therapeutics Institute. Original figure created by Angela Messmer-Blust, RNA Therapeutics Institute, UMass Chan, using BioRender⁴

III RNAi Therapeutics

RNAi Therapeutics Can Be Synthesized to Target Disease-causing Genes^{1,2}

RNAi therapeutics alter gene expression without editing the target gene itself³

RNAi therapeutics are designed with a minimal number of phosphorothioate modifications, which reduces the likelihood of non-specific protein binding that could lead to off-target effects, but still provides protection against nuclease degradation^{4–10}



Some RNAi therapeutics are already approved and available to patients, and many more are in late-stage clinical development across a diverse spectrum of diseases^{1,2}

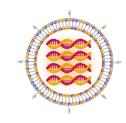
RNAi therapeutics target the underlying mechanism of disease by providing rapid knockdown of a target gene^{1,2}

RNAi Therapeutics Leverage the Natural RNAi Mechanism to Decrease Production of the Target Protein^{1–4}

- Based on Nobel Prize-winning scientific discovery⁵
- Leveraging the naturally occurring mechanism for silencing of gene expression^{1–3}
- A single siRNA bound to RISC is recycled and can cleave multiple mRNAs during its lifetime, 1-3,6 and can cause a rapid, targeted, and sustained decrease in the levels of disease-causing protein 1-3,7,8

Scan QR code for video content: RNAi Therapeutics: How Do They Work?

III Delivering siRNAs to the Liver



Alnylam Has Developed Two Clinically Validated Modalities for Targeted siRNA Delivery to the Liver, Where Disease-causing Proteins May Be Synthesized^{1–4}

Lipid nanop	particles ((LNPs)
-------------	-------------	--------

GalNAc-siRNA conjugates

Delivery mechanism

Synthetic siRNAs encapsulated in LNPs^{1,2}

Metabolically stabilized synthetic siRNA conjugated to a GalNAc ligand^{2,3}

Structure and size

Multi-component particle system (four different lipids plus the siRNA) of <100 nm diameter¹

One tris-GalNAc molecule conjugated to the sense strand of a ds-siRNA molecule^{2–4}

Delivery to liver

Natural pathway involving association with targeting ligands (e.g. ApoE) of receptors expressed on the surface of hepatocytes¹

Natural pathway involving the GalNAc ligand binding to the ASGPR on hepatocytes^{2,3}

Administration method

IV infusion^{1,2}

SC injection^{2,3}

Example

Patisiran²

Vutrisiran, givosiran, lumasiran^{3,4}

| | GalNAc-siRNA Conjugates Enable Targeted Delivery to the Liver¹⁻³

- The trivalent GalNAc ligand has a high affinity for the ASGPR, expressed on the surface of hepatocytes^{1,2}
- Upon binding, GalNAc–siRNA conjugates are engulfed into hepatocytes by receptor-mediated endocytosis^{1,2}
- GalNAc and the linker are degraded off the siRNA conjugate and free siRNA passes into the hepatocyte cytoplasm^{1,2}
- Once in the cytoplasm, siRNAs are loaded onto RISC, targeting and degrading the corresponding mRNA, and decreasing production of the target protein^{1,2}

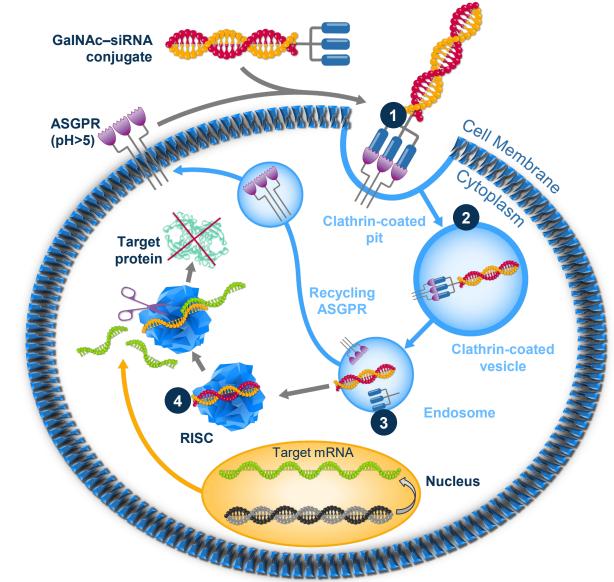
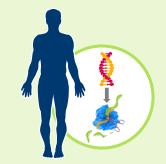
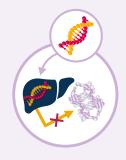
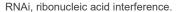


Figure adapted with permission from Benizri et al. Bioconjug Chem 2019;30:366-83. Copyright (2024) American Chemical Society³


III Summary

Summary


RNAi is a naturally occurring mechanism which cells use to silence gene expression^{1–3}


RNAi therapeutics
utilize this
endogenous
mechanism and
can be synthesized
to silence
a specific diseasecausing gene^{1–5}

RNAi therapeutics can decrease production of the target diseasecausing protein^{1,4,5}

Delivery of RNAi therapeutics can be targeted to the organ where the protein is being produced, for example the liver^{1,4,6}

² Alnylam

RNA Science

RNAiScience.com

- 👱 Learn about Alnylam & RNAi
- View Congress & Publication Material
- **Explore Our Therapeutic Area Resources**
- ****** Connect with Alnylam Medical

To learn more, scan QR code or visit RNAiScience.com

